Assessing models of viscous flow relative to fibres for obtention of the porosity of micro- and nano- fibrous mats

Autores

  • Alessandro Oliveira Universidade Federal de São Carlos
  • Mônica Aguiar
  • Vádila Guerra

DOI:

https://doi.org/10.53660/CLM-199-217

Palavras-chave:

Porosity, Packing Density, Fibres, Microfibres, Nanofibres

Resumo

Theoretical and semi-empirical models of viscous flow relative to fibres were used to obtain the porosity of micro-fibrous and nano-fibrous mats applied in air filtration. Overall efficiencies of collection of sodium chloride particles (5.94–224.7 nm) were calculated for the mats considering the porosities obtained using different models. The lowest deviations for the collection efficiency were achieved using the model based on the fractal theory and the Davies’ model (-5.4% and 4.2% for the micro-fibrous mat; 2.0% and 2.9% for nano-fibrous mat, respectively). Analysis of the effect of the porosity on the structural properties of the mats was performed using the fractal-based model and Davies’ model, showing their suitability.

Downloads

Não há dados estatísticos.

Referências

ABUZADE, R. A.; ZADHOUSH, A.; GHAREHAGHAJI, A. A. Air permeability of electrospun polyacrylonitrile nanoweb. Journal of Applied Polymer Science, v. 126, n. 1, p. 232–243, 2012. Doi: https://doi.org/10.1002/app.36774.

ALEXANDRESCU, L.; SYVERUD, K.; NICOSIA, A.; SANTACHIARA, G.; FABRIZI, A.; BELOSI, F. Airborne Nanoparticles Filtration by Means of Cellulose Nanofibril Based Materials. Journal of Biomaterials and Nanobiotechnology, v. 7, n. 1, p. 29–36, 2016. Doi: https://doi.org/10.4236/jbnb.2016.71004.

ALMEIDA, D. S.; MARTINS, L. D.; MUNIZ, E. C.; RUDKE, A. P.; SQUIZZATO, R.; BEAL, A.; DE SOUZA, P. R.; BONFIM, D. P. F.; AGUIAR, M. L.; GIMENES, M. L. Biodegradable CA/CPB electrospun nanofibres for efficient retention of airborne nanoparticles. Process Safety and Environmental Protection, v. 144, p. 177–185, 2020. Doi: https://doi.org/10.1016/j.psep.2020.07.024.

BAGHERZADEH, R; NAJAR, S. S.; LATIFI, M.; TEHRAN, M. A.; KONG, L. A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nano-fibrous materials. Journal of Biomedical Materials Research Part A, v. 101A, n. 7, p. 2107–2117, 2013. Doi: https://doi.org/10.1002/jbm.a.34487.

BAL, K.; FAN, J.; SARKAR, M. K.; YE, L. Differential spontaneous capillary flow through heterogeneous porous media. International Journal of Heat and Mass Transfer, v. 54, n. 13–14, p. 3096–3099, 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.048.

BORTOLASSI, A. C. C., NAGARAJAN, S., LIMA, B. A., GUERRA, V. G., AGUIAR, M. L., HUON, V., SOUSSAN, L., CORNU, D., MIELE, P., BECHELANY, M. Efficient nanoparticles removal and bactericidal action of electrospun nanofibres membranes for air filtration. Materials Science and Engineering C, v. 102, p. 718–729, 2019. Doi: https://doi.org/10.1016/j.msec.2019.04.094.

CHEN, C. H.; HUANG, C. T.; FUH, Y. K. Optical method for in situ monitoring of electrospinning process and porosity characterization of microporous membrane. The Journal of Micro/Nanolithography, MEMS, and MOEMS, v. 16, n. 2, 025503, 2017. Doi: https://doi.org/10.1117/1.JMM.16.2.025503.

DAVIES, C. N. The Separation of Airborne Dust and Particles. Proceedings of the Institution of Mechanical Engineers, v. 167, n. 1b, p. 185–213, 1953. Doi: https://doi.org/10.1177/002034835316701b13.

DAVIES, C N. Air filtration. London (UK): Academic Press, 1973.

DENG, L.; YE, H.; LI, X.; LI, P.; ZHANG, J.; WANG, X.; ZHU, M.; HSIAO, B. S. Self-roughened omniphobic coatings on nano-fibrous membrane for membrane distillation. Separation and Purification Technology, v. 206, n. 29, p. 14–25, 2018. Doi: https://doi.org/10.1016/j.seppur.2018.05.035.

DE OLIVEIRA, A. E.; AGUIAR, M. L.; GUERRA, V. G. Improved filter media with PVA/citric acid/Triton X-100 nanofibres for filtration of nanoparticles from air. Polymer Bulletin, v. 78, p. 6387–6408, 2021a. Doi: https://doi.org/ 10.1007/s00289-020-03431-w.

DE OLIVEIRA, A. E.; AGUIAR, M. L.; GUERRA, V. G. Theoretical Analysis of Air Filtration Phenomena for a Micro-Fibrous Filter Medium Enhanced with Electrospun Nanofibres. Aerosol Science and Engineering, v. 5, p. 81–92, 2021b. Doi: https://doi.org/10.1007/s41810-020-00086-y.

ERGUN, S. Fluid flow through packed columns. Chemical Engineering Progress, v. 48, n. 2, p. 89–94, 1952.

FREY, M. W.; LI, L. Electrospinning and Porosity Measurements of Nylon-6/Poly(ethylene oxide) Blended Nonwovens. Journal of Engineered Fibers and Fabrics, v. 2, n. 1, p. 31–37, 2007. Doi: https://doi.org/10.1177/155892500700200103.

GHASEMI-MOBARAKEH, L.; SEMNANI, D.; MORSHED, M. A novel method for porosity measurement of various surface layers of nanofibres mat using image analysis for tissue engineering applications. Journal of Applied Polymer Science, v. 106, n. 4, p. 2536–2542, 2007. Doi: https://doi.org/10.1002/app.26949.

HINDS, C. W. Aerosol Technology: Properties, Behaviour, and Measurement of Airborne Particles, 2ª ed. New York: John Wiley, 1998.

HUNG, C. H.; LEUNG, W. W. F. Filtration of nano-aerosol using nanofibre filter under low Peclet number and transitional flow regime. Separation and Purification Technology, v. 79, p. 34–42, 2011. Doi: https://doi.org/10.1016/j.seppur.2011.03.008.

LEE, H.; KIM, I. S. Nanofibres: Emerging Progress on Fabrication Using Mechanical Force and Recent Applications. Polymer Reviews, v. 58, n. 4, p. 688–716, 2018. Doi: https://doi.org/10.1080/15583724.2018.1495650.

LEUNG, W. W. F.; HUNG, C. H.; YUEN, P. T. Effect of face velocity, nanofibre packing density and thickness on filtration performance of filters with nanofibres coated on a substrate. Separation and Purification Technology, v. 71, n. 1, p. 30–37, 2010. Doi: https://doi.org/10.1016/j.seppur.2009.10.017.

LI, X.; WANG, C.; HUANG, X.; ZHANG, T.; WANG, X.; MIN, M.; WANG, L.; HUANG, H.; HSIAO, B. S. Anionic Surfactant-Triggered Steiner Geometrical Poly(vinylidene fluoride) Nanofibre/Nanonet Air Filter for Efficient Particulate Matter Removal. ACS Applied Materials & Interfaces, v. 10, n. 49, p. 42891–42904, 2018. Doi: https://doi.org/10.1021/acsami.8b16564.

PACELLA, H. E.; EASH, H. J.; FRANKOWSKI, B. J.; FEDERSPIEL, W. J. Darcy permeability of hollow fibre bundles used in blood oxygenation devices. Journal of Membrane Science, v. 382, n. 1–2, p. 238–242, 2011. Doi: https://doi.org/10.1016/j.memsci.2011.08.012.

POROUS MATERIALS. 2020. Combined Capillary Flow Porometer/Liquid Extrusion Porosimeter. Disponível em: <http://www.porousmaterialsinc.com/uploads/multibrochures/51/1455351303-cfp-lep-1100a%20v1.2.pdf>. Acesso em: 31 out. 2020.

SALUSSOGLIA, A. I. P.; TANABE, E. H.; AGUIAR, M. L. Evaluation of a vacuum collection system in the preparation of PAN fibres by forcespinning for application in ultrafine particle filtration. Journal of Applied Polymer Science, v. 137, n. 43, 49334, 2020. Doi: https://doi.org/10.1002/app.49334.

TAMAYOL A, WONG KW, BAHRAMI M. Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number. Physical Review E, v. 85, 026318, 2012. Doi: https://doi.org/10.1103/PhysRevE.85.026318.

TAN, Z. Air Pollution and Greenhouse Gases: From Basic Concepts to Engineering Applications for Air Emission Control. Singapore: Springer, 2014.

TOMADAKIS, M. M.; ROBERTSON, T. J. Viscous Permeability of Random Fibre Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results. Journal of Composite Materials, v. 39, n. 2, p. 163–188, 2005. Doi: https://doi.org/10.1177/0021998305046438.

WANG, L. Y.; YONG, W. F.; YU, L. E., CHUNG, T. S. Design of high efficiency PVDF-PEG hollow fibres for air filtration of ultrafine particles. Journal of Membrane Science, v. 535, n. 1, p. 342–349, 2017. Doi: https://doi.org/10.1016/j.memsci.2017.04.053.

WU, R.; LIAO, Q.; ZHU, X.; WANG, H. A fractal model for determining oxygen effective diffusivity of gas diffusion layer under the dry and wet conditions. International Journal of Heat and Mass Transfer, v. 54, n. 19–20, p. 4341–4348, 2011. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.010.

XIAO, B.; FAN, J.; WANG, Z.; CAI, X.; ZHAO, X. Fractal Analysis of Gas Diffusion in Porous Nanofibers. Fractals, v. 23, n. 1, 1540011, 2015. Doi: https://doi.org/10.1142/S0218348X15400113.

XIAO, B.; WANG, W.; ZHANG, X.; LONG, G.; FAN, J.; CHEN, H.; DENG, L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technology, v. 349, p. 92–98, 2019. Doi: https://doi.org/10.1016/j.powtec.2019.03.028.

YARIN, A.; POURDEYHIMI, B.; RAMAKRISHNA, S. Fundamentals and Applications of Micro- and Nanofibres. London: Cambridge University Press, 2014.

YU, B.; CHENG, P. A fractal permeability model for bi-dispersed porous media. International Journal of Heat and Mass Transfer, v. 45, p. 2983–2993, 2002. Doi: https://doi.org/10.1016/S0017-9310(02)00014-5.

YU, B.-M.; LI, J.-H. A Geometry Model for Tortuosity of Flow Path in Porous Media. Chinese Physics Letters, v. 21, n. 8, p. 1569–1571, 2004. Doi: https://doi.org/10.1088/0256-307X%2F21%2F8%2F044.

YU, S.; MYUNG, N. V. Minimizing the Diameter of Electrospun Polyacrylonitrile (PAN) Nanofibres by Design of Experiments for Electrochemical Application. Electroanalysis, v. 30, n. 10, p. 2330–2338, 2018. Doi: https://doi.org/10.1002/elan.201800368.

Downloads

Publicado

2022-05-07

Como Citar

Oliveira, A., Aguiar, M., & Guerra, V. (2022). Assessing models of viscous flow relative to fibres for obtention of the porosity of micro- and nano- fibrous mats. Concilium, 22(3), 442–456. https://doi.org/10.53660/CLM-199-217

Edição

Seção

Artigos