Gout, hyperuricemia and NLRP3 inflammasome: a literature review

Gota, hiperuricemia e inflamassoma NLRP3: uma revisão de literatura

Autores

DOI:

https://doi.org/10.53660/CLM-3321-24H32

Palavras-chave:

Inflamação, Ácido úrico, inflamassoma, NLRP3

Resumo

Gout is a form of self-limiting inflammatory arthritis caused by hyperuricemia and the deposition of monosodium urate (MSU) crystals in joint tissues. This deposition causes the activation of the NLRP3 inflammasome, thus triggering an inflammatory cascade. Intense activation of the NLRP3 inflammasome is associated with the pathogenesis of several inflammatory diseases, including gout. For this reason, this inflammasome has become a potential target for controlling this type of inflammation. In this review, 33 publications were selected from the Google Scholar, Scielo and PubMed platforms, thus providing a comprehensive perspective on the condition of gout and its relationship with the NLRP3 inflammasome. This review provides a broad view of the inflammatory process associated with gout, focusing on the NLRP3 inflammasome. In this context, interventions targeting these inflammasome and IL-1 pathways appear promising for the treatment of this disease.

Downloads

Não há dados estatísticos.

Referências

AZEVEDO, V. F. et al. Critical revision of the medical treatment of gout in Brazil. Revista Brasileira de Reumatologia, v. 57, n. 4, p. 346-355, 2017. Doi: 10.1016/j.rbre.2017.03.002.

BROZ, P.; PELEGRIN, P.; SHAO, F. The gasdermins, a protein family executing cell death and inflammation. Nature Reviews Immunology, v. 20, p. 143-157, 2020. Doi: 10.1038/s41577- 019-0228-2.

CHOI, N. et al. Loganin Alleviates Gout Inflammation by Supressing NLRP3 Inflammasome Activation and Mitochondrial Damage. Molecules, v. 26, p. 1–13, 2021. Doi: 10.3390/molecules26041071.

COLL, R. C.; SCHRODER, K.; PELEGRIN, P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends in Pharmacological Sciences, v. 43, p. 653-668, 2022. Doi: 10.1016/j.tips.2022.04.003.

DALBETH, N. et al. Gout. Seminar, v. 397, p. 1843-1855, 2021. Doi: 10.1016/ S0140-6736(21)00569-9.

DEHLIN, M.; JACOBSSON, L.; RODDY, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nature Reviews Rheumatology, v. 16, p. 380-390, 2020. Doi: 10.1038/s41584-020-0441-1.

DITTMARAB, J. M. et al. Gout and ‘Podagra’ in medieval Cambridge, England. International Journal of Paleopathology, v. 33, p. 170-181, 2021. Doi: 10.1016/j.ijpp.2021.04.007.

FATHALLAH-SHAYKH, S.A.; CRAMER, M.T. Uric acid and the kidney. Pediatric Nephrology, v. 29, p. 999-1008, 2013. Doi: 10.1007/s00467-013-2549-x.

GUO, H.; TING, J. P.-Y. Inflammasome assays in vitro and in mouse models. Current Protocols in Immunology, v. 131, p. 1-25, 2020. Doi: 10.1002/cpim.107.

GALOZZI, P. et al. Autoinflammatory Features in Gouty Arthritis. Journal of Clinical Medicine, v. 10, p. 1-15, 2021. Doi: 10.3390/jcm10091880.

GUAN, C. et al. SIRT3- mediated deacetylation of NLRC4 promotes inflammasome activation. Theranostics, v. 8, p. 3981-3995, 2021. Doi: 10.7150/thno.55573.

HOOFTMAN, A. et al. The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation. Cell Metabolism, v. 32, p. 468–478, 2020. Doi: 10.1016/j.cmet.2020.07.016.

HORTELANO, S. et al. Current status of terpenoids as inflammasome inhibitors. Biochemical Pharmacology, v. 172, 113739, 2020. Doi: 10.1016/j.bcp.2019.113739.

JHANG, J. J.; LIN, J. H.; YEN, G. C. Beneficial Properties of Phytochemicals on NLRP3 Inflammasome-Mediated Gout and Complication. Journal of Agricultural and Food Chemistry, v. 66, n. 4, p. 765–772, 2018. Doi: 10.1021/acs.jafc.7b05113.

KEENAN, R. T. The biology of urate. Seminars in Arthritis and Rheumatism, v. 50, p. S2-S10, 2020. Doi: 10.1016/j.semarthrit.2020.04.007.

LATOURTE, A. et al. Hyperuricemia, Gout, and the Brain-an Update. Current Rheumatology Reports, v. 23, p. 1-10, 2021. Doi: 10.1007/s11926-021-01050-6.

LI, L.; ZHANG, Y.; ZENG, C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. American Journal of Translational Research, v. 12, p. 3167-3181, 2020.

LIN, Y. et al. Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Through Enhancing Nrf2 Signaling. Frontiers in Immunology, v. 11, p. 1-13, 2020. Doi: 10.3389/fimmu.2020.580593.

ROSSATO, M. F. et al. Monosodium urate crystal interleukin-1β release is dependent on Toll-like receptor 4 and transient receptor potential V1 activation. Rheumatology, v. 59, p. 233–242, 2020. Doi: 10.1093/rheumatology/kez259.

RUIZ-MIYAZAWA, K. W. The citrus flavanone naringenin reduces gout-induced joint pain and inflammation in mice by inhibiting the activation of NFκB and macrophage release of IL-1β. Journal of Functional Foods, v. 48, p. 106-116, 2018. Doi: 10.1016/j.jff.2018.06.02.

SAHDEV, N. et al. Tophaceous gout in the sternoclavicular joint. Journal of Surgical Case Reports, p. 1-2, 2020. Doi: 10.1093/jscr/rjaa398.

SINGH, J. A.; GAFFO, A. Gout epidemiology and comorbidities. Seminars in Arthritis and Rheumatism, v. 50, p. S11-S16, 2020. Doi: 10.1016/j.semarthrit.2020.04.008.

SHARMA, M.; ALBA, E. Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes. International Journal of Molecular Sciences, v. 22, p. 1-37, 2021. Doi: 10.3390/ijms22020872.

SHI, C. et al. Recent advances in gout drugs. European Journal of Medicinal Chemistry, v. 245, p. 1-15, 2023. Doi: 10.1016/j.ejmech.2022.114890.

SZEKANECZ, Z. et al. The NLRP3 inflammasome – interleukin 1 pathway as a therapeutic target in gout. Archives of Biochemistry and Biophysics, v. 670, p. 82-93, 2019. Doi: 10.1016/j.abb.2019.01.031.

WANG, L. et al. Total saponin of Dioscorea collettii attenuates MSU crystal‐induced inflammation via inhibiting the activation of the NALP3 inflammasome and caspase‐1 in THP‐1 macrophages. Molecular Medicine Reports, v. 21, p. 2466-2474, 2020. Doi: 10.3892/mmr.2020.11035.

WEAVER, J. S. et al. Gouty Arthropathy: Review of Clinical Manifestations and Treatment, With Emphasis on Imaging. Journal Clinical Medicine, v. 11, p. 1-28, 2022. Doi: 10.3390/jcm11010166.

XIA, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, v. 593, p. 607-611, 2021. Doi: 10.1038/s41586-021-03478-3.

XUE, Y. et al. NLRP3 inflammasome inhibitor cucurbitacin B suppresses gout arthritis in mice. Journal of Molecular Endocrinology, v. 67, n. 2, p. 27-40, 2021. Doi: 10.1530/JME-20-0305.

YAN, C.-Y. et al. Celastrol ameliorates Propionibacterium acnes/LPS-induced liver damage and MSU-induced gouty arthritis via inhibiting K63 deubiquitination of NLRP3. Phytomedicine, v. 80, p. 1-11, 2021. Doi: 10.1016/j.phymed.2020.153398.

ZAHID, A. et al. Pharmacological inhibitors of the NLRP3 inflammasome. Frontiers in Immunology, v. 10, n. 10, p. 1–10, 2019. Doi: 10.3389/fimmu.2019.02538.

ZENG, L. et al. Identification of Interleukin-1-Beta Inhibitors in Gouty Arthritis Using an Integrated Approach Based on Network Pharmacology, Molecular Docking, and Cell Experiments. Hindawi, p. 1-18, 2022. Doi: 10.1155/2022/2322417.

ZHANG, X. et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. European Journal of Medicinal Chemistry, v. 185, p. 1-19, 2020. Doi: 10.1016/j.ejmech.2019.111822.

Downloads

Publicado

2024-05-01

Como Citar

Lima, E. S. ., & Hilgenberg, L. C. R. . (2024). Gout, hyperuricemia and NLRP3 inflammasome: a literature review: Gota, hiperuricemia e inflamassoma NLRP3: uma revisão de literatura. Concilium, 24(8), 378–394. https://doi.org/10.53660/CLM-3321-24H32

Edição

Seção

Artigos